Skip to content

Adam Chalmers

Solving common problems with Kubernetes

I first learned Kubernetes ("k8s" for short) in 2018, when my manager sat me down and said "Cloudflare is migrating to Kubernetes, and you're handling our team's migration." This was slightly terrifying to me, because I was a good programmer and a mediocre engineer. I knew how to write code, but I didn't know how to deploy it, or monitor it in production. My computer science degree had taught me all about algorithms, data structures, type systems and operating systems. It had not taught me about containers, or ElasticSearch, or Kubernetes. I don't think I even wrote a single YAML file in my entire degree. I was scared of ops. I was terrified of Kubernetes.

Eventually I made it through and migrated all the Cloudflare Tunnel infrastructure from Marathon to Kubernetes. I didn't enjoy it, and I was way over my deadline, but I did learn a lot. Now it's 2022, and I'm leading a small team of engineers, some of whom have never used Kubernetes before. So I've found myself explaining Kubernetes to them. They seemed to find it helpful, so I thought I'd write it down and share it with the rest of you.

This article is aimed at engineers who need to deploy their code using Kubernetes, but have no idea what Kubernetes is or how it works. I'm going to tell you a story about a junior engineer. We're going to follow this engineer as they build a high-quality service, and when they run into problems, we'll see how Kubernetes can help solve them. Hopefully this will get you comfortable building your own services in k8s!

What are Rust's HTTP extensions?

I learned about extensions when reading the hyper docs. But they also pop up in lots of other Rust web libraries, like http, tonic, and actix-web. So they must be really useful, if so many libraries offer them. But I personally had no idea what they were or how to use them. Today I'm going to explain what extensions really are (a set of values, keyed by type), and how you can use them to pass data between different parts of your web servers (e.g. middleware, routers, and handler functions). I'll give you a real-world example from the gRPC server I'm building at my job.

Parsing bitstreams with Nom

Programming languages generally only manipulate bytes (groups of 8 bits). It can be pretty tricky to manipulate single bits. But sometimes you need to -- for example, a DNS header has some 4-bit numbers, and encodes some boolean flags into single bits. So we really need a way to parse binary data without chunking it up into bytes of 8 bits.

Luckily, Nom can do this! In the last blog post, we learned how to parse text files with Nom. The trick is to start with simple parsers that parse a few characters at a time. Then, using combinators, combine those simple parsers into more complex parsers that can deserialize an entire structured file. We can reuse this approach for parsing binary data too. Let's see how!

Parsing Text with Nom

"Parsing" is turning a stream of raw text or binary into some structured data types, i.e. a Rust type that your code can understand and use. This isn't the textbook definition of parsing, but damnit, this is my blog and my opinion. This tutorial is about nom, my favourite Rust parsing library. It uses a parser combinator approach: you start writing tiny parsers that match, say, a single number or a character. These become building blocks for larger parsers, that match, say, a date or a phone number. By combining many small parsers together, you can build a big parser that decodes a file or stream into nice Rust structs and enums. In this tutorial we'll use Nom to parse the input file to an Advent of Code puzzle.

Pin, Unpin, and why Rust needs them

Using async Rust libraries is usually easy. It's just like using normal Rust code, with a little async or .await here and there. But writing your own async libraries can be hard. The first time I tried this, I got really confused by arcane, esoteric syntax like T: ?Unpin and Pin<&mut Self>. I had never seen these types before, and I didn't understand what they were doing. Now that I understand them, I've written the explainer I wish I could have read back then. In this post, we're gonna learn

  • What Futures are
  • What self-referential types are
  • Why they were unsafe
  • How Pin/Unpin made them safe
  • Using Pin/Unpin to write tricky nested futures